11,115 research outputs found

    A Generalized Multiscale Finite Element Method for the Brinkman Equation

    Full text link
    In this paper we consider the numerical upscaling of the Brinkman equation in the presence of high-contrast permeability fields. We develop and analyze a robust and efficient Generalized Multiscale Finite Element Method (GMsFEM) for the Brinkman model. In the fine grid, we use mixed finite element method with the velocity and pressure being continuous piecewise quadratic and piecewise constant finite element spaces, respectively. Using the GMsFEM framework we construct suitable coarse-scale spaces for the velocity and pressure that yield a robust mixed GMsFEM. We develop a novel approach to construct a coarse approximation for the velocity snapshot space and a robust small offline space for the velocity space. The stability of the mixed GMsFEM and a priori error estimates are derived. A variety of two-dimensional numerical examples are presented to illustrate the effectiveness of the algorithm.Comment: 22 page

    Integrated fault estimation and accommodation design for discrete-time Takagi-Sugeno fuzzy systems with actuator faults

    Get PDF
    This paper addresses the problem of integrated robust fault estimation (FE) and accommodation for discrete-time Takagi–Sugeno (T–S) fuzzy systems. First, a multiconstrained reduced-order FE observer (RFEO) is proposed to achieve FE for discrete-time T–S fuzzy models with actuator faults. Based on the RFEO, a new fault estimator is constructed. Then, using the information of online FE, a new approach for fault accommodation based on fuzzy-dynamic output feedback is designed to compensate for the effect of faults by stabilizing the closed-loop systems. Moreover, the RFEO and the dynamic output feedback fault-tolerant controller are designed separately, such that their design parameters can be calculated readily. Simulation results are presented to illustrate our contributions

    A Constant-Factor Approximation for Multi-Covering with Disks

    Full text link
    We consider variants of the following multi-covering problem with disks. We are given two point sets YY (servers) and XX (clients) in the plane, a coverage function κ:XN\kappa :X \rightarrow \mathcal{N}, and a constant α1\alpha \geq 1. Centered at each server is a single disk whose radius we are free to set. The requirement is that each client xXx \in X be covered by at least κ(x)\kappa(x) of the server disks. The objective function we wish to minimize is the sum of the α\alpha-th powers of the disk radii. We present a polynomial time algorithm for this problem achieving an O(1)O(1) approximation
    corecore